Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Carbohydr Polym ; 312: 120756, 2023 Jul 15.
Article in English | MEDLINE | ID: covidwho-2309426

ABSTRACT

In this study, we developed a new filtering bioaerogel based on linear polyvinyl alcohol (PVA) and the cationic derivative of chitosan (N-[(2-hydroxy-3-trimethylamine) propyl] chitosan chloride, HTCC) with a potential antiviral application. A strong intermolecular network architecture was formed thanks to the introduction of linear PVA chains, which can efficiently interpenetrate the glutaraldehyde(GA)-crosslinked HTCC chains. The morphology of the obtained structures was examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The aerogels and modified polymers' elemental composition (including the chemical environment) was determined using X-ray photoelectron spectroscopy (XPS). New aerogels with more than twice as much developed micro- and mesopore space and BET-specific surface area were obtained concerning the starting sample chitosan aerogel crosslinked by glutaraldehyde (Chit/GA). The results obtained from the XPS analysis showed the presence of cationic 3-trimethylammonium groups on the surface of the aerogel, which can interact with viral capsid proteins. No cytotoxic effect of HTCC/GA/PVA aerogel was also observed on fibroblast cells of the NIH3T3 line. Furthermore, the HTCC/GA/PVA aerogel has been shown that efficiently traps mouse hepatitis virus (MHV) from suspension. The presented concept of aerogel filters for virus capture based on modified chitosan and polyvinyl alcohol has a high application potential.


Subject(s)
Chitosan , Viruses , Animals , Mice , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Glutaral/chemistry , NIH 3T3 Cells
2.
Sci Rep ; 13(1): 4401, 2023 03 16.
Article in English | MEDLINE | ID: covidwho-2258067

ABSTRACT

Chitosan nanoparticles (CNPs) are promising biopolymeric nanoparticles with excellent physicochemical, antimicrobial, and biological properties. CNPs have a wide range of applications due to their unique characteristics, including plant growth promotion and protection, drug delivery, antimicrobials, and encapsulation. The current study describes an alternative, biologically-based strategy for CNPs biosynthesis using Olea europaea leaves extract. Face centered central composite design (FCCCD), with 50 experiments was used for optimization of CNPs biosynthesis. The artificial neural network (ANN) was employed for analyzing, validating, and predicting CNPs biosynthesis using Olea europaea leaves extract. Using the desirability function, the optimum conditions for maximum CNPs biosynthesis were determined theoretically and verified experimentally. The highest experimental yield of CNPs (21.15 mg CNPs/mL) was obtained using chitosan solution of 1%, leaves extract solution of 100%, initial pH 4.47, and incubation time of 60 min at 53.83°C. The SEM and TEM images revealed that CNPs had a spherical form and varied in size between 6.91 and 11.14 nm. X-ray diffraction demonstrates the crystalline nature of CNPs. The surface of the CNPs is positively charged, having a Zeta potential of 33.1 mV. FTIR analysis revealed various functional groups including C-H, C-O, CONH2, NH2, C-OH and C-O-C. The thermogravimetric investigation indicated that CNPs are thermally stable. The CNPs were able to suppress biofilm formation by P. aeruginosa, S. aureus and C. albicans at concentrations ranging from 10 to 1500 µg/mL in a dose-dependent manner. Inhibition of biofilm formation was associated with suppression of metabolic activity, protein/exopolysaccharide moieties, and hydrophobicity of biofilm encased cells (r ˃ 0.9, P = 0.00). Due to their small size, in the range of 6.91 to 11.14 nm, CNPs produced using Olea europaea leaves extract are promising for applications in the medical and pharmaceutical industries, in addition to their potential application in controlling multidrug-resistant microorganisms, especially those associated with post COVID-19 pneumonia in immunosuppressed patients.


Subject(s)
Anti-Infective Agents , COVID-19 , Chitosan , Nanoparticles , Humans , Chitosan/chemistry , Artificial Intelligence , Staphylococcus aureus , Nanoparticles/chemistry , Anti-Infective Agents/pharmacology
3.
Biosensors (Basel) ; 13(1)2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2236357

ABSTRACT

In this work, we report on the development of a simple electrochemical immunosensor for the detection of D-dimer protein in human plasma samples. The immunosensor is built by a simple drop-casting procedure of chitosan nanoparticles (CSNPs) as biocompatible support, Protein A (PrA), to facilitate the proper orientation of the antibody sites to epitopes as a capture biomolecule, and the D-dimer antibody onto a carboxyl functionalized multi-walled carbon nanotubes screen printed electrode (MWCNTs-SPE). The CSNPs have been morphologically characterized by Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS) techniques. Successively, the electrochemical properties of the screen-printed working electrode after each modification step have been characterized by differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The resulting MWCNTs-CSNPs-PrA-D-dimer Ab immunosensor displays an optimal and promising platform for antibody immobilization and specific D-dimer detection. DPV has been used to investigate the antigen/antibody interaction at different D-dimer concentrations. The proposed voltammetric immunosensor allowed a linear range from 2 to 500 µg L-1 with a LOD of 0.6 µg L-1 and a sensitivity of 1.3 µA L µg-1 cm-2. Good stability and a fast response time (5 s) have been reported. Lastly, the performance of the voltammetric immunosensor has been tested in human plasma samples, showing satisfactory results, thus attesting to the promising feasibility of the proposed platform for detecting D-dimer in physiological samples.


Subject(s)
Biosensing Techniques , COVID-19 , Chitosan , Metal Nanoparticles , Nanotubes, Carbon , Humans , Biosensing Techniques/methods , Nanotubes, Carbon/chemistry , Immunoassay , COVID-19/diagnosis , Biomarkers , Prognosis , Antibodies , Metal Nanoparticles/chemistry , Electrodes , Chitosan/chemistry , Electrochemical Techniques , Limit of Detection , Gold/chemistry
4.
Chirality ; 34(9): 1166-1190, 2022 09.
Article in English | MEDLINE | ID: covidwho-2084347

ABSTRACT

Polysaccharides arouse great interest due to their structure and unique properties, such as biocompatibility, biodegradability, and absence of toxicity. Polysaccharides from marine sources are particularly useful due to the wide variety of applications and biological activities. Chitosan, a deacetylated derivative of chitin, is an example of an interesting bioactive marine-derived polysaccharide. Moreover, a wide variety of chemical modifications and conjugation of chitosan with other bioactive molecules are responsible for improvements in physicochemical properties and biological activities, expanding the range of applications. An overview of the synthetic approaches for preparing chitosan, chitosan derivatives, and conjugates is described and discussed. A recent update of the biological activities and applications in different research fields, mainly focused on the last 5 years, is presented, highlighting current trends.


Subject(s)
Chitosan , Chitin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Stereoisomerism
5.
Mar Drugs ; 20(8)2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-2023893

ABSTRACT

The increased interest in nanomedicine and its applicability for a wide range of biological functions demands the search for raw materials to create nanomaterials. Recent trends have focused on the use of green chemistry to synthesize metal and metal-oxide nanoparticles. Bioactive chemicals have been found in a variety of marine organisms, including invertebrates, marine mammals, fish, algae, plankton, fungi, and bacteria. These marine-derived active chemicals have been widely used for various biological properties. Marine-derived materials, either whole extracts or pure components, are employed in the synthesis of nanoparticles due to their ease of availability, low cost of production, biocompatibility, and low cytotoxicity toward eukaryotic cells. These marine-derived nanomaterials have been employed to treat infectious diseases caused by bacteria, fungi, and viruses as well as treat non-infectious diseases, such as tumors, cancer, inflammatory responses, and diabetes, and support wound healing. Furthermore, several polymeric materials derived from the marine, such as chitosan and alginate, are exploited as nanocarriers in drug delivery. Moreover, a variety of pure bioactive compounds have been loaded onto polymeric nanocarriers and employed to treat infectious and non-infectious diseases. The current review is focused on a thorough overview of nanoparticle synthesis and its biological applications made from their entire extracts or pure chemicals derived from marine sources.


Subject(s)
Chitosan , Metal Nanoparticles , Nanoparticles , Neoplasms , Noncommunicable Diseases , Animals , Bacteria , Chitosan/chemistry , Drug Delivery Systems , Fungi , Mammals , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Noncommunicable Diseases/drug therapy , Pharmaceutical Preparations , Polymers/therapeutic use
6.
Mar Drugs ; 20(8)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2023891

ABSTRACT

Nowadays, the therapeutic efficiency of small interfering RNAs (siRNA) is still limited by the efficiency of gene therapy vectors capable of carrying them inside the target cells. In this study, siRNA nanocarriers based on low molecular weight chitosan grafted with increasing proportions (5 to 55%) of diisopropylethylamine (DIPEA) groups were developed, which allowed precise control of the degree of ionization of the polycations at pH 7.4. This approach made obtaining siRNA nanocarriers with small sizes (100-200 nm), positive surface charge and enhanced colloidal stability (up to 24 h) at physiological conditions of pH (7.4) and ionic strength (150 mmol L-1) possible. Moreover, the PEGylation improved the stability of the nanoparticles, which maintained their colloidal stability and nanometric sizes even in an albumin-containing medium. The chitosan-derivatives displayed non-cytotoxic effects in both fibroblasts (NIH/3T3) and macrophages (RAW 264.7) at high N/P ratios and polymer concentrations (up to 0.5 g L-1). Confocal microscopy showed a successful uptake of nanocarriers by RAW 264.7 macrophages and a promising ability to silence green fluorescent protein (GFP) in HeLa cells. These results were confirmed by a high level of tumor necrosis factor-α (TNFα) knockdown (higher than 60%) in LPS-stimulated macrophages treated with the siRNA-loaded nanoparticles even in the FBS-containing medium, findings that reveal a good correlation between the degree of ionization of the polycations and the physicochemical properties of nanocarriers. Overall, this study provides an approach to enhance siRNA condensation by chitosan-based carriers and highlights the potential of these nanocarriers for in vivo studies.


Subject(s)
Chitosan , Nanoparticles , Chitosan/chemistry , HeLa Cells , Humans , Nanoparticles/chemistry , Particle Size , Polyethylene Glycols/chemistry , RNA, Small Interfering/metabolism
7.
Carbohydr Polym ; 296: 119928, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-1966409

ABSTRACT

The coating is frequently adopted to modify the product surface without influencing the essential features of the pristine products. Recently, significant demand has existed for efficient anti-fogging/anti-microbial surfaces in various applications to inhibit microbial growth with high transparency in high-humidity environments, especially in pandemics such as COVID-19. The current study used dual-functional chitosan (Ch) polysaccharide coating with highly hydrophilic properties to be progressively incorporated onto the glass substrates using a simple one-pot technique. Utilizing hot/cold fogging tests and plate count method, the dual-functional Ch/SiO2(3) layer possesses excellent antifogging performance and anti-microbial activity. The hydrogen bonds and electrostatic attractions formed between MSN and Ch result in a higher bound water ratio, as confirmed by the low field nuclear magnetic resonance (LF-NMR). Therefore, based on the chitosan/silica layer, 95 % is the minimum proportion of bound water necessary in the final layer structure to completely inhibit microbial and fogging activities.


Subject(s)
Anti-Infective Agents , COVID-19 , Chitosan , Optical Devices , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Humans , Silicon Dioxide , Water
8.
Carbohydr Polym ; 290: 119500, 2022 Aug 15.
Article in English | MEDLINE | ID: covidwho-1797107

ABSTRACT

The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.


Subject(s)
COVID-19 Drug Treatment , Chitosan , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chitosan/chemistry , Humans , Nanomedicine , SARS-CoV-2
9.
Int J Mol Sci ; 22(24)2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1580689

ABSTRACT

Global reports on multidrug resistance (MDR) and life-threatening pathogens such as SARS-CoV-2 and Candida cruris have stimulated researchers to explore new antimicrobials that are eco-friendly and economically viable. In this context, biodegradable polymers such as nisin, chitin, and pullulan play an important role in solving the problem. Pullulan is an important edible, biocompatible, water-soluble polymer secreted by Aureobasidium pullulans that occurs ubiquitously. It consists of maltotriose units linked with α-1,6 glycosidic bonds and is classed as Generally Regarded as Safe (GRAS) by the Food and Drug Administration (FDA) in the USA. Pullulan is known for its antibacterial, antifungal, antiviral, and antitumor activities when incorporated with other additives such as antibiotics, drugs, nanoparticles, and so on. Considering the importance of its antimicrobial activities, this polymer can be used as a potential antimicrobial agent against various pathogenic microorganisms including the multidrug-resistant (MDR) pathogens. Moreover, pullulan has ability to synthesize biogenic silver nanoparticles (AgNPs), which are remarkably efficacious against pathogenic microbes. The pullulan-based nanocomposites can be applied for wound healing, food packaging, and also enhancing the shelf-life of fruits and vegetables. In this review, we have discussed biosynthesis of pullulan and its role as antibacterial, antiviral, and antifungal agent. Pullulan-based films impregnated with different antimicrobials such as AgNPs, chitosan, essential oils, and so on, forming nanocomposites have also been discussed as natural alternatives to combat the problems posed by pathogens.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple/drug effects , Glucans/biosynthesis , Anti-Bacterial Agents , Anti-Infective Agents/chemistry , Antifungal Agents , COVID-19 , Chitin/pharmacology , Chitosan/chemistry , Drug Resistance, Multiple/physiology , Food Packaging , Glucans/metabolism , Glucans/pharmacology , Humans , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nisin/pharmacology , Polymers/chemistry , SARS-CoV-2
10.
Int J Biol Macromol ; 198: 101-110, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1587672

ABSTRACT

Respiratory infected by COVID-19 represents a major global health problem at moment even after recovery from virus corona. Since, the lung lesions for infected patients are still sufferings from acute respiratory distress syndrome including alveolar septal edema, pneumonia, hyperplasia, and hyaline membranes Therefore, there is an urgent need to identify additional candidates having ability to overcome inflammatory process and can enhance efficacy in the treatment of COVID-19. The polypenolic extracts were integrated into moeties of bovine serum albumin (BSA) and then were coated by chitosan as a mucoadhesion polymer. The results of interleukin-6, and c-reactive protein showed significant reduction in group treated by Encap. SIL + CUR (64 ± 0.8 Pg/µL & 6 ± 0.5 µg/µL) compared to group treated by Cham. + CUR (102 ± 0.8 Pg/µL & 7 ± 0.5 µg/µL) respectively and free capsules (with no any drug inside) (148 ± 0.6 Pg/µL & 10 ± 0.6 µg/µL) respectively. Histopathology profile was improved completely. Additionally, encapsulating silymarin showed anti-viral activity in vitro COVID-19 experiment. It can be summarized that muco-inhalable delivery system (MIDS) loaded by silymarin can be used to overcome inflammation induced by oleic acid and to overcome COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Curcumin/pharmacology , Lung Injury/drug therapy , Nanoparticles/chemistry , Silymarin/pharmacology , Administration, Inhalation , Animals , Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , C-Reactive Protein/metabolism , Chamomile/chemistry , Chitosan/chemistry , Chlorocebus aethiops , Curcumin/administration & dosage , Drug Delivery Systems/methods , Flavonoids/analysis , Flavonoids/chemistry , Interleukin-6/metabolism , Lung Injury/blood , Lung Injury/chemically induced , Lung Injury/pathology , Male , Mice , Milk Thistle/chemistry , Nanoparticles/administration & dosage , Oleic Acid/toxicity , Silymarin/administration & dosage , Vero Cells , Viral Plaque Assay
11.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: covidwho-1572494

ABSTRACT

Low density polyethylene (LDPE) films covered with active coatings containing mixtures of rosemary, raspberry, and pomegranate CO2 extracts were found to be active against selected bacterial strains that may extend the shelf life of food products. The coatings also offer antiviral activity, due to their influence on the activity of Φ6 bacteriophage, selected as a surrogate for SARS-CoV-2 particles. The mixture of these extracts could be incorporated into a polymer matrix to obtain a foil with antibacterial and antiviral properties. The initial goal of this work was to obtain active LDPE films containing a mixture of CO2 extracts of the aforementioned plants, incorporated into an LDPE matrix via an extrusion process. The second aim of this study was to demonstrate the antibacterial properties of the active films against Gram-positive and Gram-negative bacteria, and to determine the antiviral effect of the modified material on Φ6 bacteriophage. In addition, an analysis was made on the influence of the active mixture on the polymer physicochemical features, e.g., mechanical and thermal properties, as well as its color and transparency. The results of this research indicated that the LDPE film containing a mixture of raspberry, rosemary, and pomegranate CO2 extracts incorporated into an LDPE matrix inhibited the growth of Staphylococcus aureus. This film was also found to be active against Bacillus subtilis. This modified film did not inhibit the growth of Escherichia coli and Pseudomonas syringae cells; however, their number decreased significantly. The LDPE active film was also found to be active against Φ6 particles, meaning that the film had antiviral properties. The incorporation of the mixture of CO2 extracts into the polymer matrix affected its mechanical properties. It was observed that parameters describing mechanical properties decreased, although did not affect the transition of LDPE significantly. Additionally, the modified film exhibited barrier properties towards UV radiation. Modified PE/CO2 extracts films could be applied as a functional food packaging material with antibacterial and antiviral properties.


Subject(s)
Food Packaging/methods , Plant Extracts/pharmacology , Polyethylene/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Bacteriophage phi 6/drug effects , Biofilms , Chitosan/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Plant Extracts/chemistry , Polyethylene/pharmacology , Polymers/chemistry , Pomegranate , Rosmarinus/chemistry , Rubus , SARS-CoV-2/drug effects
12.
Carbohydr Polym ; 273: 118605, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1370153

ABSTRACT

Advanced biomaterials provide an interesting and versatile platform to implement new and more effective strategies to fight bacterial infections. Chitosan is one of these biopolymers and possesses relevant features for biomedical applications. Here we synthesized nanoparticles of chitosan derivatized with diethylaminoethyl groups (ChiDENPs) to emulate the choline residues in the pneumococcal cell wall and act as ligands for choline-binding proteins (CBPs). Firstly, we assessed the ability of diethylaminoethyl (DEAE) to sequester the CBPs present in the bacterial surface, thus promoting chain formation. Secondly, the CBP-binding ability of ChiDENPs was purposed to encapsulate a bio-active molecule, the antimicrobial enzyme Cpl-711 (ChiDENPs-711), with improved stability over non-derivatized chitosan. The enzyme-loaded system released more than 90% of the active enzybiotic in ≈ 2 h, above the usual in vivo half-life of this kind of enzymes. Therefore, ChiDENPs provide a promising platform for the controlled release of CBP-enzybiotics in biological contexts.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biomimetic Materials/chemistry , Chitosan/analogs & derivatives , Drug Carriers/chemistry , Endopeptidases/pharmacology , Nanoparticles/chemistry , A549 Cells , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Biomimetic Materials/metabolism , Chitosan/chemistry , Chitosan/metabolism , Drug Carriers/metabolism , Drug Liberation , Endopeptidases/chemistry , Humans , Nanoparticles/metabolism , Streptococcus pneumoniae/drug effects
13.
J Aerosol Med Pulm Drug Deliv ; 34(5): 293-302, 2021 09.
Article in English | MEDLINE | ID: covidwho-1440594

ABSTRACT

Background: The precaution of airborne transmission of viruses, such as influenza, SARS, MERS, and COVID-19, is essential for reducing infection. In this study, we applied a zero-valent nanosilver/titania-chitosan (nano-Ag0/TiO2-CS) filter bed, whose broad-spectrum antimicrobial efficacy has been proven previously, for the removal of viral aerosols to minimize the risk of airborne transmission. Methods: The photochemical deposition method was used to synthesize the nano-Ag0/TiO2-CS antiviral material. The surface morphology, elemental composition, and microstructure of the nano-Ag0/TiO2-CS were analyzed by a scanning electron microscopy/energy dispersive X-ray spectroscopy and a transmission electron microscopy, respectively. The MS2 bacteriophages were used as surrogate viral aerosols. The antiviral efficacy of nano-Ag0/TiO2-CS was evaluated by the MS2 plaque reduction assay (PRA) and filtration experiments. In the filtration experiments, the MS2 aerosols passed through the nano-Ag0/TiO2-CS filter, and the MS2 aerosol removal efficiency was evaluated by an optical particle counter and culture method. Results and Conclusions: In the MS2 PRA, 3 g of nano-Ag0/TiO2-CS inactivated 97% of MS2 bacteriophages in 20 mL liquid culture (2 ± 0.5 × 1016 PFU/mL) within 2 hours. The removal efficiency of nano-Ag0/TiO2-CS filter (thickness: 6 cm) for MS2 aerosols reached up to 93%. Over 95% of MS2 bacteriophages on the surface of the nano-Ag0/TiO2-CS filter were inactivated within 20 minutes. The Wells-Riley model predicted that when the nano-Ag0/TiO2-CS filter was used in the ventilation system, airborne infection probability would reduce from 99% to 34.6%. The nano-Ag0/TiO2-CS filter could remain at 50% of its original antiviral efficiency after continuous operation for 1 week, indicating its feasibility for the control of the airborne transmission.


Subject(s)
Air Filters , Air Microbiology , Chitosan/chemistry , Filtration/instrumentation , Inhalation Exposure/prevention & control , Levivirus/isolation & purification , Metal Nanoparticles , Silver/chemistry , Titanium/chemistry , Aerosols , COVID-19/prevention & control , COVID-19/transmission , Equipment Design , Humans , Inhalation Exposure/adverse effects , Levivirus/pathogenicity , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity
15.
Int J Biol Macromol ; 187: 492-512, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1330854

ABSTRACT

With increasing global cases and mortality rates due to COVID-19 infection, finding effective therapeutic interventions has become a top priority. Marine resources are not explored much and to be taken into consideration for exploring antiviral potential. Chitosan (carbohydrate polymer) is one such bioactive glycan found ubiquitously in marine organisms. The presence of reactive amine/hydroxyl groups, with low toxicity/allergenicity, compels us to explore it against SARS-CoV-2. We have screened a library of chitosan derivatives by site-specific docking at not only spike protein Receptor Binding Domain (RBD) of wild type SARS-CoV-2 but also on RBD of B.1.1.7 (UK) and P.1 (Brazil) SARS-CoV-2 variants. The obtained result was very interesting and ranks N-benzyl-O-acetyl-chitosan, Imino-chitosan, Sulfated-chitosan oligosaccharides derivatives as a potent antiviral candidate due to its high binding affinity of the ligands (-6.0 to -6.6 kcal/mol) with SARS-CoV-2 spike protein RBD and they critically interacting with amino acid residues Tyr 449, Asn 501, Tyr 501, Gln 493, Gln 498 and some other site-specific residues associated with higher transmissibility and severe infection. Further ADMET analysis was done and found significant for exploration of the future therapeutic potential of these three ligands. The obtained results are highly encouraging in support for consideration and exploration in further clinical studies of these chitosan derivatives as anti-SARS-CoV-2 therapeutics.


Subject(s)
Antiviral Agents/pharmacology , Chitosan/pharmacology , Genetic Variation , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/chemistry , Binding Sites , Brazil , Chitosan/chemistry , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Conformation/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , United Kingdom , Virus Internalization/drug effects
16.
Carbohydr Polym ; 269: 118345, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1271581

ABSTRACT

This work reports novel chitosan functionalized graphene oxide (GO) nanocomposites combined fluorescence imaging and therapeutic functions in one agent, which can serve as a promising alternative to alleviate related diseases caused hyperinflammation. Briefly, GO was designed to be conjugated with chitosan, fluorescein-labeled peptide, toll-like receptor 4 antibody and hydroxycamptothecin/aloe emodin. We have demonstrated that such nanocomposites could effectively achieve active targeted delivery of pro-apoptotic and anti-inflammatory drugs into inflammatory cells and cause cells apoptosis by acid-responsive drug release. Moreover, confocal fluorescence imaging confirms that the drug-induced inflammatory cells apoptosis could be visualized the light-up fluorescence of fluorescein activated by caspase-3. Meanwhile, inflammatory-related biomarkers have down-regulated after the nanocomposites' treatment in both vitro and vivo experiments consistent with the results in histological sections. In summary, the bifunctional nanocomposites that possess anti-inflammation and fluorescence imaging could serve as a promising therapeutic agent for reducing hyperinflammation caused by numerous diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Apoptosis/physiology , Drug Carriers/chemistry , Inflammation/drug therapy , Nanocomposites/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Antibodies/immunology , Camptothecin/analogs & derivatives , Camptothecin/chemistry , Camptothecin/therapeutic use , Cattle , Cell Line , Chitosan/chemistry , Drug Liberation , Emodin/chemistry , Emodin/therapeutic use , Fluorescent Dyes/chemistry , Graphite/chemistry , Humans , Lipopolysaccharides , Mammary Glands, Human/drug effects , Mammary Glands, Human/pathology , Mastitis/chemically induced , Mastitis/drug therapy , Mastitis/pathology , Mice , Toll-Like Receptor 4/immunology
17.
Expert Rev Vaccines ; 20(7): 797-810, 2021 07.
Article in English | MEDLINE | ID: covidwho-1260998

ABSTRACT

Introduction: Adjuvants are essential to vaccines for immunopotentiation in the elicitation of protective immunity. However, classical and widely used aluminum-based adjuvants have limited capacity to induce cellular response. There are increasing needs for appropriate adjuvants with improved profiles for vaccine development toward emerging pathogens. Carbohydrate-containing nanoparticles (NPs) with immunomodulatory activity and particulate nanocarriers for effective antigen presentation are capable of eliciting a more balanced humoral and cellular immune response.Areas covered: We reviewed several carbohydrates with immunomodulatory properties. They include chitosan, ß-glucan, mannan, and saponins, which have been used in vaccine formulations. The mode of action, the preparation methods, characterization of these carbohydrate-containing NPs and the corresponding vaccines are presented.Expert opinion: Several carbohydrate-containing NPs have entered the clinical stage or have been used in licensed vaccines for human use. Saponin-containing NPs are being evaluated in a vaccine against SARS-CoV-2, the pathogen causing the on-going worldwide pandemic. Vaccines with carbohydrate-containing NPs are in different stages of development, from preclinical studies to late-stage clinical trials. A better understanding of the mode of action for carbohydrate-containing NPs as vaccine carriers and as immunostimulators will likely contribute to the design and development of new generation vaccines against cancer and infectious diseases.


Subject(s)
Adjuvants, Immunologic/chemistry , COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Carbohydrates/chemistry , Nanoparticles/chemistry , Adjuvants, Immunologic/administration & dosage , Animals , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Carbohydrates/administration & dosage , Carbohydrates/immunology , Chitosan/administration & dosage , Chitosan/chemistry , Chitosan/immunology , Humans , Mannans/administration & dosage , Mannans/chemistry , Mannans/immunology , Nanoparticles/administration & dosage , beta-Glucans/administration & dosage , beta-Glucans/chemistry , beta-Glucans/immunology
18.
Molecules ; 26(9)2021 May 03.
Article in English | MEDLINE | ID: covidwho-1238921

ABSTRACT

Chitosan has many useful intrinsic properties (e.g., non-toxicity, antibacterial properties, and biodegradability) and can be processed into high-surface-area nanofiber constructs for a broad range of sustainable research and commercial applications. These nanofibers can be further functionalized with bioactive agents. In the food industry, for example, edible films can be formed from chitosan-based composite fibers filled with nanoparticles, exhibiting excellent antioxidant and antimicrobial properties for a variety of products. Processing 'pure' chitosan into nanofibers can be challenging due to its cationic nature and high crystallinity; therefore, chitosan is often modified or blended with other materials to improve its processability and tailor its performance to specific needs. Chitosan can be blended with a variety of natural and synthetic polymers and processed into fibers while maintaining many of its intrinsic properties that are important for textile, cosmeceutical, and biomedical applications. The abundance of amine groups in the chemical structure of chitosan allows for facile modification (e.g., into soluble derivatives) and the binding of negatively charged domains. In particular, high-surface-area chitosan nanofibers are effective in binding negatively charged biomolecules. Recent developments of chitosan-based nanofibers with biological activities for various applications in biomedical, food packaging, and textiles are discussed herein.


Subject(s)
Chitosan/chemistry , Cosmeceuticals/chemistry , Food Packaging , Textiles , Amines/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Crystallization , Edible Films , Humans , Nanofibers/chemistry , Nanoparticles/chemistry , Polymers , Regeneration , Skin/pathology , Skin, Artificial , Solubility , Tissue Engineering , Wound Healing
19.
J Inorg Biochem ; 219: 111454, 2021 06.
Article in English | MEDLINE | ID: covidwho-1157503

ABSTRACT

In recent years, some viruses have caused a grave crisis to global public health, especially the human coronavirus. A truly effective vaccine is therefore urgently needed. Vaccines should generally have two features: delivering antigens and modulating immunity. Adjuvants have an unshakable position in the battle against the virus. In addition to the perennial use of aluminium adjuvant, nanoparticles have become the developing adjuvant candidates due to their unique properties. Here we introduce several typical nanoparticles and their antivirus vaccine adjuvant applications. Finally, for the combating of the coronavirus, we propose several design points, hoping to provide ideas for the development of personalized vaccines and adjuvants and accelerate the clinical application of adjuvants.


Subject(s)
Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Nanoparticles/chemistry , Viral Vaccines/immunology , Aluminum/chemistry , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Calcium Phosphates/chemistry , Chitosan/chemistry , Gold/chemistry , Humans , Nanoparticles/administration & dosage , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Viral Vaccines/chemistry
20.
Int J Biol Macromol ; 179: 33-44, 2021 May 15.
Article in English | MEDLINE | ID: covidwho-1085549

ABSTRACT

Chitosan is a deacetylated polycationic polysaccharide derived from chitin. It is structurally constituted of N-acetyl-D-glucosamine and ß-(1-4)-linked D-glucosamine where acetyl groups are randomly distributed across the polymer. The parameters of deacetylation and depolymerization process greatly influence various physico-chemical properties of chitosan and thus, offer a great degree of manipulation to synthesize chitosan of interest for various industrial and biomedical applications. Chitosan and its various derivatives have been a potential molecule of investigation in the area of anti-microbials especially anti-fungal, anti-bacterial and antiviral. The current review predominantly highlights and discusses about the antiviral activities of chitosan and its various substituted derivatives against a wide spectrum of human, animal, plants and bacteriophage viruses. The extrinsic and intrinsic factors that affect antiviral efficacy of chitosan have also been talked about. With the rapid unfolding of COVID-19 pandemic across the globe, we look for chitosan as a plausible potent antiviral molecule for fighting this disease. Through this review, we present enough literature data supporting role of chitosan against different strains of SARS viruses and also chitosan targeting CD147 receptors, a novel route for invasion of SARS-CoV-2 into host cells. We speculate the possibility of using chitosan as potential molecule against SARS-CoV-2 virus.


Subject(s)
COVID-19 Drug Treatment , Chitosan/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/pharmacology , COVID-19/virology , Chitin/chemistry , Chitin/pharmacology , Chitosan/chemistry , Humans , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL